Sinusoidal Vibration

Christi Lalanne

Language: English

Publisher: CRC Press

Published: Mar 29, 2002

Description:

About the Series: This important new series of five volumes has been written with both the professional engineer and the academic in mind. Christian Lalanne explores every aspect of vibration and shock, two fundamental and crucially important areas of mechanical engineering, from both the theoretical and practical standpoints. As all products need to be designed to withstand the environmental conditions to which they are likely to be subjected, prototypes must be verified by calculation and laboratory tests, the latter according to specifications from national or international standards. The concept of tailoring the product to its environment has gradually developed whereby, from the very start of a design project, through the to the standards specifications and testing procedures on the prototype, the real environment in which the product being tested will be functioning is taken into account. The five volumes of Mechanical Shock and Vibration cover all the issues that need to be addressed in this area of mechanical engineering. The theoretical analyses are placed in the context of the real world and of laboratory tests - essential for the development of specifications. Volume I: Sinusoidal Vibration The relative and absolute response of a mechanical system with a single degree of freedom is considered for arbitrary excitation, and its transfer function defined in various forms. The characteristics of sinusoidal vibration are placed in the context both of the real world and of laboratory tests, and transient and steady-state response of the single-degree-of-freedom system. First viscous damping and than non-linear damping is considered. The various types of swept sine and their properties are described and, for the one degree-of-freedom system, the consequences of an inappropriate choice of sweep rate are considered. From the latter, rules governing the choice of suitable sweep rates are developed.